Optimization and validation of cryostat temperature conditions for trans-reflectance mode FTIR microspectroscopic imaging of biological tissues
نویسندگان
چکیده
In Fourier transform infrared (FTIR) microspectrocopy, the tissue preparation method is crucial, especially how the tissue is cryo-sectioned prior to the imaging requires special consideration. Having a temperature difference between the cutting blade and the specimen holder of the cryostat greatly affects the quality of the sections. Therefore, we have developed an optimal protocol for cryo-sectioning of biological tissues by varying the temperature of both the cutting blade and the specimen holder. Using this protocol, we successfully cryo-sectioned four different difficult-to-section tissues including white adipose tissue (WAT), brown adipose tissue (BAT), lung, and liver. The optimal temperatures that required to be maintained at the cutting blade and the specimen holder for the cryo-sectioning of WAT, BAT, lung, and liver are (-25, -20 °C), (-25, -20 °C), (-17, -13 °C) and (-15, -5 °C), respectively. The optimized protocol developed in this study produced high quality cryo-sections with sample thickness of 8-10 μm, as well as high quality trans-reflectance mode FTIR microspectroscopic images for the tissue sections. •Use of cryostat technique to make thin sections of biological samples for FTIR microspectroscopy imaging.•Optimized cryostat temperature conditions by varying the temperatures at the cutting blade and specimen holder to obtain high quality sections of difficult-to-handle tissues.•FTIR imaging is used to obtain chemical information from cryo-sectioned samples with no interference of the conventional paraffin-embedding agent and chemicals.
منابع مشابه
Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملEvaluation of Pre-Fixed Biological Tissues Preparation Methods for ATR-FTIR Biospectroscopy
Evaluation of Pre-Fixed Biological Tissues Preparation Methods for ATR-FTIR Biospectroscopy Fourier transform infrared (FTIR) spectroscopy in ATR (attenuated total reflection) mode is a powerful tool for studying biomedical samples, which can provide important structural information on the molecular composition. Currently, formalin fixation and paraffin preservation (FFPP) is the preferred sourc...
متن کاملOptimization, preparation and characterization of rutin-quercetin dual drug loaded keratin nanoparticles for biological applications
Objective(s): Response surface methodology (RSM) by central composite design (CCD) was applied to statistically optimize the preparation of Rutin-Quercetin (Ru-Qr) dual drug loaded human hair keratin nanoparticles as well as evaluate the characteristics. Materials and Methods: The effects of three independent parameters, namely, temperature (X1:10-40 C), surfactant (X2: SDS (1), SLS (2), Tween-...
متن کاملFTIR spectroscopic imaging of live cancer cells
FTIR spectroscopic imaging allows the visualization of the distribution of chemical components in cells. However, obtaining images of living cells is difficult because of the strong absorption of water in the mid-infrared region. The use of attenuated total reflection (ATR) FTIR spectroscopic imaging provides a possibility to study tissues or live cells in an aqueous environment.[1] This approa...
متن کاملOptical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics.
Infrared microspectroscopic imaging data of single human prostate cancer cells, on an artificial extracellular matrix (Matrigel) thin-film surface, are presented. The spectral intensity maps, obtained in reflection mode, appear to show that the protein intensity distribution observed at the location of a cell changes dramatically depending on the concentration and/or thickness of the underlying...
متن کامل